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Abstract. The aim of this paper is to analyze different kinds of trade matching algorithms.
The matching (or trade allocation) algorithm is an important part of an exchange trading
mechanism. We begin with an overview of the matching algorithms currently used at the
biggest world derivatives exchanges. Then we analyze the impact of these algorithms on
the strategy of a rational trader, and derive implications of the induced trader’s behavior
for the overall market efficiency. Our special focus is on the Time Pro-Rata algorithm intro-
duced by Euronext.LIFFE in 2007 for the short-term interest rate futures contracts. Using
rigorous mathematical models, we discuss how the optimal trading strategy should look
like, and point out a number of unusual properties of this strategy. The obtained results
might be interesting not only from the theoretical point of view, but also for a practical
trader. Our analysis implies that the Time Pro-Rata algorithm substantially complicates
decision making, and, more importantly, induces individually rational trader’s behavior
that is inconsistent with the general market efficiency.

Keywords: Pro-Rata algorithm, Price/Time algorithm, international derivative exchanges,
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1 Motivation

Financial markets provide an essential tool for an efficient functioning of today’s global
economy. An important part of financial markets are derivative exchanges. By trading
derivatives, economic agents are able to mitigate or even remove the financial components
of the risks associated with their primary businesses. In order to be able to effectively use
financial markets the hedgers need liquidity and, if possible, low trading costs.

Efficiency and liquidity of a financial market strongly depends on the trading mecha-
nism. Nowadays, most markets are electronic and trading is done directly from a computer
screen or automatically by so-called APIM (automated price injection) models. In order
to attract liquidity, an electronic exchange has a need for so-called market makers or price
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makers, i.e., agents who place limit orders on the bid and/or offer sides. A hedger or other
market participants (so called price takers) are able to make a direct trade for the best
price offered by price makers.

The motivation of market makers to place limit orders is to “buy low and sell high”.
Thus, a market maker would prefer as large spread between his bid and offer as possible.
However, the competition among market makers usually tends to narrow the spread to a
minimum size of one tick. With a relatively narrow spread, not all trades done by market
makers are profitable. In order to be successful, a market maker must be able to offset the
losing (bad) trades by a sufficient number of profitable (good) trades so that, in expected
value, an upcoming random trade is profitable.

The size of one tick is determined by an exchange. The exchange’s goal is maximization
of the volume traded. Setting too large tick size would discourage price takers from trading
as the trading is too costly. On the other hand, no minimum spread would discourage price
makers: When placing a limit order for a certain price, a competition could place a limit
order for an arbitrarily better price. Similarly, the price makers would be discouraged if
the minimum tick size was too low.

The existence of price makers is especially important for the exchange when a new
market is developed. The exchange often chooses so called designated market makers who
are required to place limit order of a minimum size and certain maximum spread (say 2
ticks). On the other hand, the designated market makers can usually trade for free and
might also get financial compensation for their service.

Furthermore, for successful trading of price makers, the essential feature is the matching
algorithm.

2 Matching Algorithms

In this section we describe the basic matching (or trade allocation) algorithms. We compare
the advantages and disadvantages of each algorithm. We list matching algorithms for a few
important derivative exchanges.

The trade allocation process. Consider an incoming market order of N lots. (By lot
we mean the minimum traded volume.) Suppose that this market order is traded against n
limit orders for the best price of a cumulative volume Q lots. A matching algorithm decides
how many lots each limit order gets. The most common are the Pro-Rata and Price/Time
matching algorithms.

2.1 Pro-Rata Algorithm

Under this algorithm, an incoming trade is split among limit orders proportionally to their
sizes. More precisely: Suppose n limit orders Q1, ..., Qn of the cumulative volume Q lots,
and an incoming trade of N ≤ Q lots. Each order Qi has the pro-rata proportion

pi =
Qi

Q
.
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The number of lots obtained by order Qi is equal to

Pi = floor(piN).

The remaining lots may be redistributed in various ways. Most common methods are:

• FIFO (first in, first out). This is a common solution that gives an extra bonus to the
first order in the queue. (See Price/Time algorithm.)

• Unfilled orders get 1 lot. The remaining lots are assigned to those orders which pro-
rata proportions are less than one. (In the order from the biggest to the smallest
proportion.) This feature provides an extra motivation for small market participants.

• Analogues to the D’Hondt method. This is a method often used in the election process
which operates with “demand quotients” (see [1]).

A frequent element of the pro-rata algorithm is time priority for the first price-improving
limit order, usually up to a certain certain maximum number of lots. This feature motivates
narrowing the spread between bid and offer.

An interesting question arises what would be in some sense “optimal” redistribution
of the remaining lots. The D’Hondt’s method is mathematically appealing, however, it
is not commonly used in practice. One could argue that even better way of distributing
the remaining lots would be by generating random numbers. The likelihood of obtaining
an additional lot would be equal to the remaining decimal proportion for each market
participant. For example, suppose there are two working limit orders of sizes 10 lots and
20 lots. Consider an incoming trade of 2 lots. Then the first order has the proportion of
1
3 · 2 = 2

3 , while the second order has the proportion of 2
3 · 2 = 4

3 . Thus, the second order
receives 1 lot, and the remaining 1 lot is assigned to the first order with probability 2

3 , and
to the second one with probability 1

3 . In expected value both traders obtain their precise
proportions.

2.2 Price/Time Algorithm

Under the Price/Time algorithm, an incoming trade is matched with the the first orders
(at the best price), which is the so called FIFO method.

More precisely: Suppose n limit orders Q1, ..., Qn of a cumulative volume Q lots, and an
incoming trade of N ≤ Q lots. Then there exists an index 1 ≤ j ≤ n such that

∑j
i=1 Qi ≤ N

and
∑min(j+1,n)

i=1 Qi ≥ N . Under the Price/Time algorithm, the first j limit orders are filled
in full, and the remaining lots are assigned to the (j + 1)-th limit order (if j < n).

2.3 Comparison of Price/Time and Pro-Rata

Following are few basic remarks about the two basic algorithms and their comparison.

Price/Time algorithm

• Motivates to narrow the spread, since by narrowing the spread the limit order is the
first in the order queue.
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• Discourages other orders to join the queue since a limit order that joins the queue is
the last.

• Might be computationally more demanding than pro-rata. The reason is that market
participants might want to place more small orders in different positions in the order
queue, and also tend to “flood” the market, i.e., place limit order in the depth of the
market in order to stay in the queue.

An implication of the first two features is that the spread for Price/Time algorithm might
tend to be rather narrow, while the cumulative quoted volume at a given price might be
smaller than under the Pro-Rata algorithm.

Pro-Rata algorithm

• Motivates other orders to join the queue with large limit orders. As a consequence,
the cumulative quoted volume at the best price is relatively large.

• Does not motivate to narrow the spread in the natural way. This weakness is partially
offset by introducing the time priority element for the first order that makes a new
price.

We note that the most common algorithm is Price/Time. We note that Pro-Rata is often
used for derivative contracts traded with many expirations (eg. STIR futures).

2.4 International Derivative Exchanges

We now provide a summary of the most important international derivative exchanges. This
summary is for general overview only and does not pretend to be complete.

• Euronext.LIFFE (London International Financial Futures Exchange).

– Interest rate futures – Euribor (Euro Interbank Offered Rate), Short Sterling,
Euroswiss.

– Until middle 2007: Pro-rata algorithm.
– Since middle 2007: Time pro-rata algorithm (see the next section).

• CME (Chicago Mercantile Exchange)

– Eurodollar – pro-rata algorithm with FIFO for remaining lots.

• CBOT (Chicago Board of Trade)

– Fed Funds Futures – pro-rata algorithm with preference for unfilled orders.

• Eurex (Frankfurt) – price/time algorithm.
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3 LIFFE Time Pro-Rata Algorithm

In this section we provide theoretical analysis of the Time Pro-Rata algorithm which was
introduced by one of the most important derivative exchanges Euronext.LIFFE in London
in middle 2007. The results are somewhat surprising and very interesting. We next discuss
the impact of the new algorithm on practical trading.

3.1 Time Pro-Rata Algorithm

Suppose n limit orders Q1, ..., Qn of a cumulative volume Q lots, and an incoming trade
of N ≤ Q lots. Each order Qi has an order rank ki = i. The first order in the queue is
Qn with order rank kn = n, i.e. order ranks are integers from 1 to n. The time pro-rata
proportion for limit order Qi is given by

pi =
Qiki∑n

j=1 Qjkj
.

The number of lots obtained by order Qi is equal to

Pi = min{Qi, floor(piN)}.
Unfilled orders might get 1 lot. Any remaining lots are distributed in additional rounds.

The matching algorithm further includes the time priority element for the first price-
improving order of a size 50 to 500 lots. For the original definition of the time pro-rata
proportion see [2]. The Exchange definition is equivalent to ours, albeit uses somewhat
cumbersome notation.

3.2 Rational Trading Under The Time Pro-Rata Algorithm

In the following we list the immediate consequences of the definition of the Time Pro-Rata
algorithm, and then analyze the rational trading strategies.

After exploring the definition one can immediately see that there is a motivation for a
market participant to split his single limit order to more orders. The reason is that the
pro-rata proportion of a split order does not change, while the cumulative order rank can
be increased. We can conclude:

• If we consider the first market participant, it can be easily seen that the first market
participant will split his limit order of size L lots into L orders of minimal sizes 1
lot. This way any new incoming market participant will obtain a lower time pro-rata
proportion, regardless of how large limit orders he places, whether splitting or not.
(Intuitively, by splitting orders the first market participant “shades” any potential
followers.)

• Regardless of the structure of an order book, a new market participant will split his
order of size L lots into one order of size L1 ≥ 1 lots and L−L1 orders of sizes 1 lot.
Especially, if L1 = L then there is no splitting, while L1 = 1 means full splitting like
in the case of the first market participant. (If the agent placed a larger order to a
latter place then by moving the extra lots to the first placed order with the highest
order rank he would obviously improve his time pro-rata proportion.)
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In the following example one can see that the splitting of orders is essential for the
resulting traded proportion.

Example. Suppose an order book with five market participants. The first two and the last
two market participants place one limit order of the size 120 lots. The third agent places
orders of the total size 120 lots while using different trading strategies.

Consider an incoming trade of the size 100 lots. We compare the following four trading
strategies: No splitting strategy, uniform splitting to three orders strategy, smart splitting
to three orders strategy, and optimal splitting strategy.

No splitting strategy

Order number Order size Resulting fill

1 120 34

2 120 27

3 120 20

4 120 13

5 120 6

The fill for the no splitting strategy is 20 lots.

Uniform splitting to three orders strategy

Order number Order size Resulting fill

1 120 36

2 120 30

3 40 8

4 40 6

5 40 5

6 120 10

7 120 5

The combined fill for the uniform splitting strategy is 8+6+5 = 19 lots. Note that the
uniform splitting results in lower total fill than the no splitting strategy. This is solely due
to the rounding effect.
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Smart splitting to three orders strategy

Order number Order size Resulting fill

1 120 34

2 120 28

3 118 23

4 1 1

5 1 1

6 120 9

7 120 4

The combined fill for this smart splitting strategy is 23+1+1 = 25 lots. This is an
essentially larger fill than for the no splitting strategy.

Optimal splitting strategy

Order number Order size Resulting fill

1 120 34

2 120 32

3 99 26

4 1 1

5 1 1

... ... ...

8 1 1

9 1 0

... ... ...

24 1 0

25 120 2

26 120 1

The combined fill for the optimal splitting strategy is 26 + 5 · 1 = 31 lots. For the
optimal splitting, the difference from the no splitting strategy is enormous. (The optimal
splitting strategy is not easy to find.)
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In the following theorem we show why the most “natural” strategy of placing a single
large limit order is not a good one.

Theorem 1. Let n,L, Q1, Q2, ..., Qn be positive integers. Assume we have n working limit
orders of sizes Q1, Q2, ..., Qn lots. Suppose no remaining time priority order. Suppose
further that there is no rounding, i.e. one can trade a fraction of a lot.
The agent decides to place limit orders of a total size L lots such that the sequence of orders
is non-increasing. Then the worst possible strategy is to place one limit order of the size L.

Proof. Suppose first that the agent places one limit order of size L. Then the matching
proportion of i−th order is

pi =
(n + 2− i)Qi∑n

j=1(n + 2− j)Qj + L
, i = 1, ..., n.

The agent has the matching proportion of

s1 =
L∑n

j=1(n + 2− j)Qj + L
.

Let k be a positive integer. Suppose now that the agent splits his order into k orders of
sizes L1, · · ·Lk, where

∑k
j=1 Lj = L and L1 ≥ L2 ≥ . . . ≥ Lk. The agent’s proportion

changes to

s2 =

∑k
j=1(k + 1− j)Lj∑n

j=1(n + 1 + k − j)Qj +
∑k

j=1(k + 1− j)Lj

.

Denote S =
∑k

j=1(k + 1 − j)Lj , α =
∑n

j=1(n + 1 − j)Qj and β =
∑n

j=1 Qj . We want to
prove the inequality s2 ≥ s1 which is equivalent to

S(α + β + L) ≥ L(α + kβ + S),

equivalently
α(S − L) ≥ β(kL− S).

This holds because α ≥ β (which is trivial), and S − L ≥ kL− S from the definition of S
and from the fact that Lk is a non-increasing sequence.

Remark 1. We make the following observations:

• We obtain equality s2 = s1 in Theorem 1 (i.e., splitting does not help) if and only if
both n = 1 (only 1 preceding order) and we split equally, i.e., L1 = . . . = Lk.

• From remarks and Theorem 1 it follows that, for the optimal trading strategy, L2 =
. . . = Lk = 1 and k > 1 (i.e., we split) as soon as L > 1.
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3.3 The Optimal Trading Strategy for New Market Participant

We assume that a new market participant places a limit order. We first assume that the
agent maximizes his matching proportion locally, i.e., without considering additional market
participants that might join the order book. In Remark 3 we will provide an explicit formula
for the case when the agent assumes additional fixed number of market participants.

We approximate the discrete order book and respective ranks by a continuous time
version which enables us to obtain the explicit results.

Theorem 2. Suppose that the order book consists of Q orders of the size 1 lot. The agent
wants to place a limit order of the size L lots. The optimal strategy is to split a size pL
into minimum 1 lot orders, and the remainder (1− p)L lots are submitted to the market as
the first order of the agent.The optimal proportion p is equal to

p = p(z) =
1
2

√
1 + 4z − 1

z
,

where z = L/Q is the size of the agent’s order relative to the existing orders in the market.

Proof. The weight of the agent is given as

w(p) =
∫ pL

0
u du + pL · (1− p)L =

(
p− 1

2
p2

)
L2.

The matching proportion of the agent is given by

s(p) =
w(p)

w(p) +
∫ pL+Q
pL u du

=
w(p)

w(p) + pLQ + 1
2Q2

.

We maximize the matching proportion by setting s′(p) = 0, and get

w′(p)
(

pLQ +
1
2
Q2

)
= w(p)LQ,

equivalently

p2 + p · Q

L
− Q

L
= 0.

The positive solution of the previous equation is given by

p(z) =
1
2

√
1 + 4z − 1

z
,

with z = L/Q.

Remark 2. We can see that p(z) is an decreasing function of z ≥ 0. We have

lim
z→0+

p(z) = 1, lim
z→∞ p(z) = 0.

This means that we split fully if the number of preceding one lot orders is large, while we
do not split in the case where our agent has essentially larger order than the number of
preceding one lot orders. For a realistic scenario of z = 1 we have p(1) = 1

2

(√
5− 1

) .= 0.618
(the famous golden ratio, see [3]), i.e., the agent splits 61.8% of the desired limit order and
the remaining 38.2% is submitted as the first large order.
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Remark 3. Note that the agent might split more if he were to consider new market
participants that would join the order book.

We can obtain explicit results in the case where the agent assumes that a fixed number
of one lot limit orders will follow after he places his orders. Denote Qu the number of
one lot orders preceding the agent, L the agent’s desired limit order with the optimal split
proportion p, and Qd the remaining one lot orders in the queue following the agent. Then

p(zd, zu) =
1
2




√(
2zd +

z2
d + z2

u

zu

)2

+ 4
z2
d + z2

u

zu
−

(
2zd +

z2
d + z2

u

zu

)
 ,

where zd = Qd/L, zu = Qu/L.
By setting zd = 0 we obtain as a special case Theorem 2. We can see that

lim
zd→∞

p(zd, zu) = 1, and lim
zu→∞

p(zd, zu) = 1.

This means that we split split fully if either zd or zu are sufficiently large. For zd = zu we
have

p(z, z) =
1
2

(√
(4z)2 + 8z − 4z

)
.

For example, if zd = zu = 1 we get p(1, 1) =
(√

6 − 2
) .= 0.4495, so in this case the agent

splits only 44.95% of the limit order.
It is interesting to analyze the function p(zd, zu) as a function of zd for fixed zu. We

can see that p(zd, zu) is firstly a decreasing function of zd, reaches a minimum, and then
p(zd, zu) converges to 1 as zd →∞. The intuition is that the following one lot orders first
help the agent in a sense of “pushing” his first order forward, however, later the number of
following one lot orders becomes significant and hurts the agent.

Remark 4. An interesting question arises concerning the resulting market equilibrium
under the Time Pro-Rata algorithm with rational trading strategies used by all market
participants. Under the assumption of optimal behavior of all market participants the
order book would consist of mostly one lot orders with rarely appearing large orders. The
first trader splits fully, while the second trader might place a large first order followed by
minimal 1 lot orders. The size of the first order is a function of the intensity of coming
market trades relative to the intensity of new limit trades. An analogous strategy applies
for additional traders – always placing one order of possibly large size followed by a group
of minimal 1 lot orders.

3.4 Rules And Regulations

Based on the theoretical analysis it appears that the optimal trading strategy involves a
large amount of order splitting. In fact, in order to obtain a good position in the order
book the market participants might be motivated to place limit orders also in the depth
of the market, not only at the best price, similarly as in the case of Price/Time algorithm.
Thus, each market participant might have an enormous number of limit orders. A large
number of orders could cause even technical problems for the Exchange.

The negative consequence of the algorithm was later (after consultations with experts of
Czech brokerage house RSJ Invest1) resolved by the Exchange by implementing several dis-

1References are available by the authors upon request.
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cretionary rules that significantly impact the practical trading. One of the most important
rules is the prohibition of order splitting. The Exchange explicitly states (see [2], paragraph
4.3): “For the avoidance of doubt, members are prohibited from entering multiple orders at
the same price level for the specific purpose of attempting to obtain a greater proportion of
any subsequent matching volume than would be the case if a single order had been submitted
(i.e. order splitting).”

The discretionary feature of the previous rule is especially striking when one considers
common practical trading behavior. A natural component of practical trading are order
amends (increasing or decreasing the limit order size.) However, the Time Pro-Rata algo-
rithm in principle prohibits amending orders up as the amended limit order would lose its
position in the order book and go to the end of the queue. Thus, instead of amending an
existing limit order up the market participant needs to place a new limit order. Note, how-
ever, that placing an additional limit order might or might not be considered as breaching
the rule of “no order splitting”.

Another somewhat striking rule is limiting the number of messages (i.e., number of limit
trade placements and cancelations) per Exchange member. This rule was introduced after
few members, including RSJ Invest, started to offer a very profitable trading strategy of
small limit orders for clients. The Exchange decided to implement the messaging constraint
per member (respectively per so-called individual trading mnemonics) rather than per client
in order to limit the number of small clients per Exchange member. In principle, this rule
implies that certain types of clients (the small clients) are penalized. The number of small
clients per Exchange member is limited unless the Exchange member trades also for clients
with large limit orders.

From the theoretical analysis we know that the motivation of a big player is to split his
limit trade into many small limit trades which is prohibited by the “no order splitting” rule.
Since a big trader is forced to trade in a detrimental way one can easily infer that the small
market participants placing small orders (e.g. one lot orders) have a serious advantage as
they trade “optimally”.

4 Conclusion

The trading mechanism on today’s electronic exchanges is an important component that has
a great impact on the efficiency and liquidity of financial markets. The choice of matching
algorithm is an important part of the trading mechanism. The most common matching
algorithms are the Pro-Rata and Price/Time algorithms, with minor modifications related
mostly to distributing the remaining lots after rounding, and, in the case of the Pro-Rata
algorithm, to the time priority for the first price-improving limit order. Both algorithms
have certain advantages and disadvantages, and both are used in practice, with Price/Time
being more common.

In summer 2007 one of the major derivative exchanges Euronext.LIFFE introduced a
modification called Time Pro-Rata algorithm. This matching algorithm exhibits a mathe-
matical challenge for rigorous analysis, including exploration of the optimal trading strate-
gies for market makers. We show that the optimal trading strategy implies enormous
splitting of an intended limit order.

Unfortunately, following the optimal trading strategy may cause practical problems to
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the Exchange, even from the computational point of view of the central trading machine.
This might be one of the reasons why the Exchange implements various discretionary regu-
lations such as the prohibition of order splitting that turns out to be somewhat contradicting
the natural trading behavior.
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