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1 Introduction

Consider an agent seeking to optimally invest and consume in the presence
of proportional transaction costs. The agent can invest in a stock, modelled
as a geometric Brownian motion, and in a money market with constant rate
of interest. She may also consume and get utility U(c) = c1−p/(1−p), where
p > 0, p 6= 1. In addition, the agent must pay a proportional transaction
cost λ > 0 for transferring capital between the stock and money market. All
consumption is done from the money market. The agent wishes to maximize
the expected discounted integral over [0,∞) of the utility of consumption.

When the transaction cost λ is zero, the agent’s optimal policy is to keep
a constant proportion of wealth, which we call the Merton proportion and
denote θp, invested in the stock; see Merton [40]. When λ > 0, the optimal
policy is to maintain a position inside a wedge called the No Trade (NT )
region. Trading occurs when the position hits the boundaries of the NT
region and no trading occurs in the interior of NT . If the agent’s position
is initially outside NT , she should immediately sell or buy stock in order
to move to the boundary of NT . Except when the left boundary of NT is
the positive y-axis, the set of trading times has zero Lebesgue measure, and
the total amount of capital traded can be characterized by a possible initial
jump plus local time on the boundary of NT . When the left boundary of NT
is the positive y-axis, the agent will stay on the y-axis once she arrives there.
This problem was formulated by Magill & Constantinides [39], solved under
restrictive conditions by Davis & Norman [14], and thoroughly analyzed by
Shreve & Soner [43]. An explicit formula for the solution is not known.

The Hamilton-Jacobi-Bellman (HJB) equation for this problem is a par-
tial differential equation in two variables. For the power utility functions
considered here, this can be reduced to an equation in one variable. Nu-
merical results are provided by [1], [46], [47]. A useful and perhaps more
informative approach for obtaining explicit results, the approach of this pa-
per, is to develop a power series expansion for the value function and the
boundaries of the NT region in powers of λ. For example, Constantinides
[8] numerically computed the effect of transaction costs on the value func-
tion for our problem, and observed that transaction costs have a “first-order
effect on assets’ demand” and a “second-order effect on equilibrium asset
return.” This effect has been made precise by formal power series expan-
sions in a variety of models. Atkinson & Wilmott [2] accomplished this for a
model with fixed transaction costs studied by Morton & Pliska [41]. Whal-
ley & Wilmott [49] applied this approach to utility-based option pricing,
described below. Korn [33] developed it for maximization of exponential
utility in the presence of fixed and proportional transaction costs. Korn &
Laue [34] carried this analysis farther, including the case of two stocks and
a money market. In this paper, we treat only the case of proportional trans-
action costs, first obtaining a formal power series expansion in the spirit
of the previous papers, but then providing a rigorous justification for the
leading terms in the expansion. In particular, we observe that the width of
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the NT region is large, of order λ1/3, whereas the effect of transaction cost
on the value function is smaller, of order λ2/3.

The asymptotic expansion of this paper is valid for any Merton propor-
tion θp, except for the case in which all wealth is invested in stock (θp = 1).
In particular, we refute the conjecture in [43] that the Merton line (the set
of stock/money market positions which are in the Merton proportion) is
outside NT for θp > 1. This is the case for sufficiently high transaction
costs. However, for small transaction costs the Merton line is inside NT .

In the presence of transaction costs, contingent claim pricing by repli-
cation, or more generally by super-replication, has received considerable
attention but often leads to a trivial result: the cheapest strategy is buy-
and-hold. See [6], [13], [17], [19], [28], [29], [31], [32], [37], [44].

One alternative to the conservative super-replication method for contin-
gent claim prices, pioneered by Leland [36], is to strike a balance between
transaction costs and “hedge slippage,” and this leads to a modified Black-
Scholes equation; see, e.g., [3], [4], [5], [7], [18], [21], [23], [45]. Another
method, proposed by Hodges and Neuberger [22], is to price an option so
that a utility maximizer is indifferent between having a certain initial capital
for investment or holding the option but having initial capital reduced by
the price of the option. This produces both a price and a hedge, the latter
being the difference in the optimal trading strategies in the problem with-
out the option and the problem with the option. This utility-based option
pricing is examined in [9], [10], [15]. A formal asymptotic analysis of such
an approach appears in [49]. Once again, the methodology developed in this
paper suggests how to make this analysis rigorous. We note that in some
of these papers the utility function is U(c) = c1−p/(1− p) with p restricted
to be in (0, 1). We include p > 1 in our analysis because p ∈ (0, 1) leads to
intolerably risky behavior. See Samuelson [42] for the argument in words of
one syllable that this is the case even for logarithmic utility (p = 1).

The transaction cost problem with multiple assets was studied by [1], [6],
[27], [28]. For a jump diffusion model, see [20]. Transaction cost problems
have dual formulations which can shed light on their solutions; see [11],
[12], [16] [38]. Other papers which study super-martingales and conditions
for no-arbitrage in these models are [24], [25], [26], [35], [48].

In Section 2 we set out the model. Section 3 provides a heuristic expan-
sion of the value function in powers of λ1/3. The key results of Section 3 are
proved in Section 4, using viscosity sub- and supersolutions.

2 Model set-up and known results

The model is similar to Shreve & Soner [43]. An agent is given an initial
position of x dollars in money market and y dollars in stock. The stock
price is given by dSt = αSt dt + σSt dWt, where α and σ are positive
constants and {Wt, t ≥ 0} is a standard Brownian motion on a filtered
probability space

(
Ω,F , {Ft}t≥0,P

)
. We assume a constant interest rate
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r < α. The agent chooses a policy of three adapted processes C, L, and
M . The consumption process C is nonnegative and integrable on each finite
interval. The processes L and M are nondecreasing and right-continuous
with left limits, and L0− = M0− = 0. Lt represents the cumulative value of
stock purchased up to time t, and Mt is the cumulative value of stock sold.

Let Xt denote the wealth invested in the money market and Yt the wealth
invested in stock, with X0− = x, Y0− = y. The agent’s position evolves as

dXt = (rXt − Ct) dt− (1 + λ) dLt + (1− λ) dMt, (2.1)
dYt = αYt dt + σYt dWt + dLt − dMt. (2.2)

The constant λ ∈ (0, 1) appearing in these equations accounts for propor-
tional transaction costs, which are paid from the money market account.

Define the solvency region

S , {(x, y); x + (1 + λ) y > 0, x + (1− λ) y > 0} .

The policy (C, L,M) is admissible for (x, y) if (Xt, Yt) given by (2.1), (2.2)
is in S for all t ≥ 0. We denote by A(x, y) the set of all such policies. We
note that A(x, y) 6= ∅ if and only if (x, y) ∈ S; see [43], Remarks 2.1, 2.2.

We introduce the agent’s utility function Up defined for all c ≥ 0 by
Up(c) , c1−p/(1 − p). (An analysis is also possible for U0(c) = log c.) Let
β > 0 be a positive discount rate and define the value function

v(x, y) = sup
(C,L,M)∈A(x,y)

E
∫ ∞

0

e−βtUp(Ct) dt, (x, y) ∈ S.

This problem when λ = 0 was solved by Merton [40], who determined
that the optimal policy always keeps a wealth proportion

θp =
1
p
· α− r

σ2
, (2.3)

in the stock. We call θp the Merton proportion. For λ = 0,

v(x, y) =
1

1− p
A−p(p)(x + y)1−p, (2.4)

where

A(p) , β − r(1− p)
p

− 1
2
σ2θ2

p(1− p). (2.5)

The optimal consumption in feedback form is Ct = A(p)(Xt + Yt).
We assume throughout that A(p) > 0, which is necessary and sufficient

for finiteness of the value function for the zero transaction cost problem.
We introduce the convex dual function Ũp : (0,∞) 7→ R defined by

Ũp(c̃) , sup
c>0

{Up(c)− cc̃} =
p

1− p
c̃−(1−p)/p. (2.6)

The supremum in (2.6) is attained by c = c̃−1/p.
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Fig. 1 The solvency region

Shreve and Soner [43] show that the value function is a smooth solution
of the Hamilton-Jacobi-Bellman (HJB) equation

min
{
Lv − Ũp(vx), −(1− λ)vx + vy, (1 + λ)vx − vy

}
= 0, (2.7)

where the second-order differential operator L is given by

(Lv)(x, y) = β v(x, y)− 1
2
σ2y2 vyy(x, y)− αy vy(x, y)− rx vx(x, y).

The optimal policy can be described in terms of two numbers 0 < z1 < z2 <
1/λ which define the no-trade region (see [43], Theorem 11.2)

NT ,
{

(x, y) ∈ S; z1 <
y

x + y
< z2

}
.

If Yt/(Xt+Yt) < z1 one should buy stock to bring this ratio to the boundary
y/(x+y) = z1 of NT . If Yt/(Xt+Yt) > z2 one should sell stock to bring this
ratio to the other boundary y/(x+y) = z2 of NT . For θp < 1 we must have
0 < z1 < θp < z2 < 1, so that NT is in the first quadrant. For θp = 1, we
have 0 < z1 < z2 = 1. In this paper we show that for θp > 1 and sufficiently
small λ, 1 < z1 < θp < z2, so NT is in the second quadrant.

Power utility functions lead to homotheticity of the value function: for
γ > 0,

v(γx, γy) = γ1−p v(x, y), (x, y) ∈ S. (2.8)
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This is because (C, L, M) ∈ A(x, y) ⇔ (γC, γL, γM) ∈ A(γx, γy). Con-
sequently, the problem reduces to that of a single variable. With T ,
(−1/λ, 1/λ), we define

u(z) = v(1− z, z), z ∈ T . (2.9)

In other words, we make the change of variables z = y/(x + y), 1 − z =
x/(x + y), which maps the solvency region S onto the interval T . Then

v(x, y) = (x + y)1−p u

(
y

x + y

)
, (x, y) ∈ S. (2.10)

The HJB equation corresponding to (2.7) for the function u(z) is

min
{
Du(z)− Ũ

(
(1− p) u(z)− zu′(z)

)
, λ(1− p)u(z) + (1− λz)u′(z),

λ(1− p)u(z)− (1 + λz)u′(z)
}

= 0, (2.11)

where (see [43] p. 681, substituting λ for µ, 1 + λ for 1/(1− λ), 1− p for p)

Du(z) =
(
pA(p) +

1
2
σ2p(1− p)(z − θp)2

)
u(z)

+ pσ2z(1− z)(z − θp)u′(z)− 1
2
σ2z2(1− z)2 u′′(z).

Because v(x, y) is continuous on S and of class C2 in S \ {(x, y); x = 0}
([43], Corollary 10.2 and Theorem 11.6), the function u is continuous on T ,
C2 on T except possibly at z = 1, and satisfies (2.11). Moreover, [43] shows

λ(1− p)u(z)− (1 + λz)u′(z)=0, − 1
λ

< z ≤ z1, (2.12)

Du(z)− Ũ
(
(1− p)u(z)− zu′(z)

)
=0, z1 ≤ z ≤ z2, (2.13)

λ(1− p)u(z) + (1− λz)u′(z)=0, z2 ≤ z <
1
λ

. (2.14)

Since the function u is C2 except possibly at z = 1, at each of z1 6= 1 and
z2 6= 1 two of the above three equations hold. Moreover, vyy is continuous
at x = 0, and v(0, y) satisfies (2.7) ([43], Corollary 10.3). Furthermore,
(1 − z)2u′′(z) is continuous for z ∈ T , and limz→1(z − 1)2u′′(z) = 0 ([43],
(A.5)). Thus, two of the above three equations hold at each zi if zi = 1.

Equations (2.12), (2.14) are consequences of the directional derivative of
v(x, y) being zero in the directions of transaction in the regions in which it
is optimal to buy and sell stock, respectively. These equations imply

u(z) = u(z1)
(

1 + λz

1 + λz1

)1−p

, − 1
λ

< z ≤ z1, (2.15)

u(z) = u(z2)
(

1− λz

1− λz2

)1−p

, z2 ≤ z <
1
λ

. (2.16)

Throughout this paper, we denote by O(x), respectively o(x), any quan-
tity which is bounded by a positive constant times x, respectively lower
than any positive constant times x, in a neighborhood of x = 0.
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Lemma 1 Assume p > 0, p 6= 1. For a > 0 and b < a we have

Ũ(a− b) =
p

1− p
(a− b)

(
a−

1
p +

b

p
a−

1+p
p + O

(
b2

))

=
p

1− p
a−

1−p
p + b a−

1
p + O

(
b2

)
.

(2.17)

Proof We write

Ũ(a− b) =
p

1− p

(
a− b

)− 1−p
p =

p

1− p
(a− b) (a− b)−

1
p .

A Taylor series expansion of the function f(x) = (a − x)−1/p yields (a −
b)−1/p = a−1/p + 1

p b a−(1+p)/p + O
(
b2

)
, and we get the desired result.

3 Heuristic derivation by Taylor series

In this section we heuristically derive several terms of a power series ex-
pansion of the value function. One can get an idea on the size of the NT
wedge by the following argument. When transaction costs are introduced,
it is too expensive for an agent to keep the proportion of capital in stock
equal to θp. Suppose the agent decides to instead keep the proportion inside
an interval centered at θp having width w. She then incurs an associated
cost of transaction which is the product λ` of the transaction cost λ and the
amount of transacting (local time) ` accumulated by the state process at the
boundaries of the NT wedge. Suppose now that the no-transaction interval
has width ρw for some ρ > 0. One could multiply the stock volatility by
ρ, which is equivalent to scaling the Brownian motion by ρ, and then the
local time on the boundary of the NT wedge would also scale by ρ. If one
subsequently scales time by 1/ρ2, local time is also scaled by 1/ρ2, and we
have returned to the original volatility. The net effect of these two scalings
is to scale local time by 1/ρ. In other words, the amount of transacting is
inversely proportional to the width of the NT wedge.

On the other hand, by permitting the state process to lie in a wedge
rather than at the optimal proportion θp, the agent loses utility due to
displacement from the optimal proportion. This is proportional to the square
of the displacement. To see that, one can consider the problem with zero
transaction cost and wealth process Xt + Yt given by

d(Xt + Yt) = r(Xt + Yt) dt + (α− r)θ(Xt + Yt) dt− c(Xt + Yt) dt

+ σθ(Xt + Yt) dW (t),

where θ is a constant proportion of wealth maintained in the stock at all
times and c is a constant fraction of wealth being consumed at all times.
It is convenient to take θ to be of the form θp + ε and c to be of the form
(1 + δ)A(p)(Xt + Yt), so that ε = 0 and δ = 0 provide the optimal solution
to the zero transaction cost problem. One can then compute

E(Xt + Yt)1−p = (X0 + Y0)1−p exp
{ (

β −A(p)−B(ε)− (1− p)A(p)δ
)
t
}

,
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where B(ε) = 1
2p(1− p)σ2ε2. This yields expected utility

1
1− p

E
∫ ∞

0

e−βt
(
(1 + δ)A(p)(Xt + Yt)

)1−p dt

=
1

1− p
(X0 + Y0)1−pA−p(p)(1 + δ)1−p

(
1 +

B(ε)
A(p)

+ (1− p)δ
)−1

.

For fixed ε, this is maximized by taking δ = B
(
ε)/(pA(p)

)
, and that value

of δ results in expected utility

1
1− p

E
∫ ∞

0

e−βt
(
(1 + δ)A(p)(Xt + Yt)

)1−p dt

=
1

1− p
(X0 + Y0)1−pA−p(p)

(
1 +

1
2
(1− p)σ2A−1(p)ε2

)−p

(3.1)

=
1

1− p
(X0 + Y0)1−pA−p(p)− p

2
(X0 + Y0)1−pσ2A−1−p(p)ε2 + O(ε4).

The first term above is the value function when there is zero transaction
costs. The order ε2 term is the lowest order loss due to displacement.

Suppose an agent faced with transaction costs chooses a no-transaction
wedge whose width is order λq for some q > 0. The amount of transacting
will be of order λ−q and the marginal loss due to transacting will be of
order λ1−q. On the other hand, the marginal loss due to displacement will
be of order λ2q. The agent chooses q to balance these marginal losses, i.e.,
chooses q = 1

3 so that the width of the NT wedge is λ1/3 and the loss in
the value function due to the presence of transaction cost λ is of order λ2/3.
In Remark 4.9 we show how to carry this probabilistic discussion farther to
identify the coefficients multiplying the terms λ

1
3 in the NT width and λ

2
3

in the value funciton loss. In this section, we identify these coefficients by
an analysis based on asymptotic expansion.

There is no explicit solution to (2.13) in the interval [z1, z2]. Guided
by the above discussion, we thus assume that in this region u(z) has an
expansion in powers of λ1/3, and we expect the coefficient of λ1/3 to be
zero. In order to work with this expansion, we need to also include the
variable z, and we do that using powers of z − θp:

u(z) = γ0 − γ1 λ
1
3 − γ2 λ

2
3 − γ3 λ− γ40 λ

4
3 − γ41 (z − θp)λ

− γ42 (z − θp)2λ
2
3 − γ43 (z − θp)3λ

1
3 − γ44 (z − θp)4 + O

(
λ

5
3
)
.

(3.2)

We argued above that z − θp = O
(
λ1/3

)
for z ∈ [z1, z2]. Because we

can always move from z ∈ [z1, z2] to θp by paying a transaction cost of
λ |z − θp| = O

(
λ4/3

)
, we must have |u(z)− u(θp)| = O

(
λ4/3

)
, and so the

larger terms (z − θp), (z − θp)2, (z − θp)λ1/3, (z − θp)3, (z − θp)2λ1/3,
(z − θp)λ2/3 do not appear in (3.2).
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Using z − θp = O
(
λ1/3

)
together with (3.2) leads to the expansions

u′(z)=−γ41 λ− 2γ42 (z − θp)λ
2
3 − 3γ43 (z − θp)2λ

1
3

−4γ44 (z − θp)3 + O
(
λ

4
3
)
, (3.3)

u′′(z)=−2γ42 λ
2
3 − 6γ43 (z − θp)λ

1
3 − 12γ44 (z − θp)2 + O(λ). (3.4)

For z1 ≤ z ≤ z2 we have

Du(z)=pA(p)γ0 − pA(p)γ1 λ
1
3 − pA(p)γ2 λ

2
3 +

1
2
σ2p(1− p)(z − θp)2γ0 (3.5)

+σ2z2(1− z)2
(
γ42 λ

2
3 + 3γ43 (z − θp)λ

1
3 + 6γ44 (z − θp)2

)
+ O(λ).

Furthermore,

(1−p)u(z)− z u′(z) = (1−p)γ0− (1−p)γ1λ
1
3 − (1−p)γ2λ

2
3 +O(λ). (3.6)

Setting a = (1 − p)γ0 and b = (1 − p)γ1 λ1/3 + O
(
λ2/3

)
in Lemma 1, we

obtain

Ũ
(
(1− p)u(z)− z u′(z)

)
=

p

1− p

(
(1− p)γ0

)− 1−p
p

+ (1− p)γ1

(
(1− p)γ0

)− 1
p λ

1
3 + O

(
λ

2
3
)
.

(3.7)

Equating first the O(1) terms and then the O
(
λ1/3

)
terms in (3.5) and (3.7)

(see (2.13)), we conclude that

γ0 =
1

1− p
A−p(p), γ1 = 0.

Observe that γ0 is the value v(1− z, z) for zero transaction costs.
Since γ1 is zero, we can now set b = (1− p)γ2 λ2/3 + O(λ) in Lemma 1,

and obtain (after substituting for γ0)

Ũ
(
(1− p) u(z)− z u′(z)

)
=

p

1− p
A1−p(p)+ (1− p)γ2A(p)λ

2
3 +O(λ). (3.8)

From (2.15) and (2.16) we observe that u′′(z1) = O
(
λ2

)
and u′′(z2) =

O
(
λ2

)
. From the continuity of (1− z)2u′′(z) we get from (3.5)

Du(zi) =
p

1− p
A1−p(p)−pA(p)γ2 λ

2
3 +

1
2
σ2p(zi−θp)2A−p(p)+O(λ), i = 1, 2,

where we have omitted the terms in (3.5) arising from u′′(zi) = O
(
λ2

)
.

Setting this equal to (3.8) at zi results in (zi − θp)2 = 1
4ν2 λ

2
3 + O(λ), with

ν =
√

8
pσ2

A1+p(p)γ2. (3.9)
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We thus have

z1 − θp = −1
2
ν λ

1
3 + O

(
λ

2
3
)
, z2 − θp =

1
2
ν λ

1
3 + O

(
λ

2
3
)
. (3.10)

We may also equate the λ2/3 terms in (3.5) and (3.8) at z = θp, z = z1,
and z = z2, and substitute for zi − θp from (3.10), to obtain

A(p)γ2 = σ2 θ2
p(1− θp)2γ42,

A(p)γ2 =
1
8
σ2pA−p(p)ν2 + σ2 θ2

p(1− θp)2
(

γ42 − 3
2
γ43ν +

3
2
γ44ν

2

)
,

A(p)γ2 =
1
8
σ2pA−p(p)ν2 + σ2 θ2

p(1− θp)2
(

γ42 +
3
2
γ43ν +

3
2
γ44ν

2

)
,

which implies

γ42 =
A(p)γ2

σ2 θ2
p(1− θp)2

, γ43 = 0, γ44 = − pA−p(p)
12θ2

p(1− θp)2
. (3.11)

Finally, we observe from (2.15) and from (3.2) that

u′(z1) =
λ(1− p)
1 + λz1

u(z1) = λ(1− p)u(z1) + O
(
λ2

)
= A−p(p)λ + O

(
λ

5
3
)
,

and similarly for u′(z2). On the other hand, (3.3) and (3.10) imply that

u′(z1) = −γ41 λ + γ42ν λ− 3
4
γ43ν

2 λ +
1
2
γ44ν

3 λ + O
(
λ

4
3
)
,

u′(z2) = γ41 λ + γ42ν λ +
3
4
γ43ν

2 λ +
1
2
γ44ν

3 λ + O
(
λ

4
3
)
.

It follows that

−γ41 + γ42ν − 3
4
γ43ν

2 +
1
2
γ44ν

3 = A−p(p) = γ41 + γ42ν +
3
4
γ43ν

2 +
1
2
γ44ν

3.

Since γ43 = 0 (see (3.11)), we conclude

γ42ν +
1
2
γ44ν

3 = A−p(p), γ41 = 0. (3.12)

We have thus written the value function as

u(z) =
1

1− p
A−p(p)− γ2 λ

2
3 + O(λ).

Furthermore, we can solve for γ2 and the width of the NT interval ν from
equations (3.9), (3.11), and (3.12) to obtain

γ2 =
(

9
32

pθ4
p(1− θp)4

) 1
3

A−1−p(p)σ2, ν =
(

12
p

θ2
p(1− θp)2

) 1
3

. (3.13)
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4 Rigorous asymptotic expansion

Definition 1 Let w : T → R be continuous, taking values in (0,∞) if p ∈
(0, 1) and in (−∞, 0) if p > 1. Assume 0 < ζ1 < ζ2 < 1/λ satisfy

w(z) = w(ζ1)
(

1 + λz

1 + λζ1

)1−p

, − 1
λ

< z ≤ ζ1, (4.1)

w(z) = w(ζ2)
(

1− λz

1− λζ2

)1−p

, ζ2 ≤ z <
1
λ

. (4.2)

Assume further that w is of class C2 on (ζ1, ζ2) and the one-sided limits of
w′′ exist at the endpoints of this interval. If

λ(1− p)w(z) + (1− λz)w′(z) ≥ 0, − 1
λ

< z < ζ2, (4.3)

Dw(z)− Ũ
(
(1− p)w(z)− zw′(z)

) ≥ 0, − 1
λ

< z <
1
λ

, (4.4)

λ(1− p)w(z)− (1 + λz)w′(z) ≥ 0, ζ1 < z <
1
λ

, (4.5)

we say (w, ζ1, ζ2) is a supersolution triple.2 If (4.1), (4.2) and the reverse
of (4.4) for ζ1 < z < ζ2 hold, we say (w, ζ1, ζ2) is a subsolution triple.

If (w, ζ1, ζ2) is a supersolution (subsolution) triple, then

ϕ(x, y) , (x + y)1−pw
(
y/(x + y)

)
, (x, y) ∈ S (4.6)

is a supersolution (subsolution) of (2.7).

Lemma 2 Assume p > 0, p 6= 1. If (w, ζ1, ζ2) is a supersolution (subsolu-
tion) triple, then w(z) ≥ u(z) (w(z) ≤ u(z)) for z ∈ T .

Proof For 0 < p < 1, this follows from [43], Comparison Theorem A.3. We
give the proof for p > 1.

Let (w, ζ1, ζ2) be a supersolution triple, and let ϕ be given by (4.6). In
light of (2.10), is suffices to prove that ϕ(x0, y0) ≥ v(x0, y0) for fixed but
arbitrary (x0, y0) ∈ S. Following the construction of Theorem 9.2 of [43],
we let (C, L,M) be an optimal policy for this initial condition, i.e., with
(Xt, Yt) given by (2.1), (2.2), we have (X(0), Y (0)) ∈ ∂NT if (x0, y0) /∈ NT ,
(Xt, Yt) ∈ NT for all t ≥ 0, and

Lt =
∫ t

0

I{Ys/(Xs+Ys)=z1} dLs, Mt =
∫ t

0

I{Ys/(Xs+Ys)=z2}dMs,

Ct =
(
vx(Xt, Yt)

)−1/p
, t ≥ 0.

Then v(x0, y0) = E
∫∞
0

e−βtUp(Ct) dt.

2 For functions of the form (4.1), (4.2), the validity of (4.3) for −1/λ < z < ζ2

implies its validity for all z ∈ (−1/λ, 1/λ), and similarly for (4.5).
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The function ϕ is C2 in S except possibly on the lines y/(x + y) = ζi,
i = 1, 2. We can mollify ϕ to obtain a C2 function, apply Itô’s rule to the
mollified function, and pass to the limit. On the two lines where ϕ may
not be C2, (Xt, Yt) spends Lebesgue-measure zero time. We thus obtain
Itô’s rule for ϕ(Xt, Yt). An exception would be if ζ2 = z2 = 1, because
in this case (Xt, Yt) remains on the y−axis once the y-axis is reached. A
direct computation shows, however, that ϕyy(x, y) is continuous there, even
if ζ2 = z2 = 1, and hence we will still obtain Itô’s rule. Therefore,

d
(
e
−βt

ϕ(Xt, Yt)
)

= − e
−βt

[
Lϕ(Xt, Yt) dt + Ctϕx(Xt, Yt)

+
(
(1 + λ)ϕx(Xt, Yt)− ϕy(Xt, Yt)

)
dLt +

(− (1− λ)ϕx(Xt, Yt)

+ ϕy(Xt, Yt)
)
dMt

]
+ e

−βt

ϕy(Xt, Yt)σ dWt

≤ − e
−βt

Up(Ct) dt + e
−βt

ϕy(Xt, Yt)σ dWt,

(4.7)

where we have used the supersolution property, the fact that Lϕ = Du, and
the fact (see(2.6)) that

Ũp

(
ϕx(Xt, Yt)

) ≥ Up(Ct)− Ctϕx(Xt, Yt). (4.8)

We want to integrate (4.7) and eventually argue that the expected value of
the Itô integral is zero. Define τn = inf{t ≥ 0; |Xt + Yt| ≤ 1/n}, to obtain

∫ n∧τn

0

e−βtUp(Ct) dt + e−β(n∧τn)ϕ(Xn∧τn , Yn∧τn) (4.9)

≤ ϕ(x0, y0) + σ

∫ n∧τn

0

e−βtϕy(Xt, Yt) dWt.

We can perform a similar analysis for the value function. The function v is
C2 except on the y-axis. The x-axis is not in NT , which contains (Xt, Yt)
for all t ≥ 0. At the y-axis, vyy is continuous ([43], Corollary 10.3). This
permits us to compute the differential of v(Xt, Yt), and we obtain

∫ n∧τn

0

e−βtUp(Ct) dt + e−β(n∧τn)v(Xn∧τn , Yn∧τn) (4.10)

= v(x0, y0) + σ

∫ n∧τn

0

e−βtvy(Xt, Yt) dWt.

As n →∞, we have either τn →∞ or τn → τ0 , inf{t ≥ 0 : Xt = Yt = 0} <
∞. On the set {limn→∞ τn = τ0 < ∞}, equation (4.10), the inequality Up ≤
0 and the fact that v(0, 0) = −∞ imply

∫ τ0

0
e−βtvy(Xt, Yt) dWt = −∞. This

is impossible; Itô integrals are either finite or have lim sup = − lim inf = ∞
(see [30], Chap. 3, Problem 4.11 and p. 232). We conclude that τn → ∞
almost surely. Taking expectations in (4.10) and letting n →∞, we obtain

lim
n→∞

Ee−β(n∧τn)v(Xn∧τn , Yn∧τn) = v(x0, y0)− E
∫ ∞

0

e−βtUp(Ct) dt = 0.

(4.11)
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Because of (2.10), (4.6) and the boundedness of u and w for z ∈ NT ,
either ϕ(x, y) = 0, or there are constants c1 and c2 such that

c1ϕ(x, y) ≤ v(x, y) ≤ c2ϕ(x, y) whenever z1 ≤ y

x + y
≤ z2.

From (4.11) we conclude that limn→∞ Ee−β(n∧τn)ϕ(Xn∧τn
, Yn∧τn

) = 0.
Taking expectations and the limit in (4.9), we obtain

v(x0, y0) = E
∫ ∞

0

e−βtUp(Ct) dt ≤ ϕ(x0, y0).

Now let (w, ζ1, ζ2) be a subsolution triple. We show for fixed but ar-
bitrary (x0, y0) ∈ S that ϕ(x0, y0) ≤ v(x0, y0). This time we construct a
(suboptimal) policy (C,L, M) for which Y (0)/

(
X(0)+Y (0)

)
is either ζ1 or

ζ2 if y0/(x0 + y0) /∈ (ζ1, ζ2), (Xt, Yt) ∈ [ζ1, ζ2] for all t ≥ 0, and

Lt =
∫ t

0

I{Ys/(Xs+Ys)=ζ1} dLs, Mt =
∫ t

0

I{Ys/(Xs+Ys)=ζ2} dMs,

Ct =
(
ϕx(Xt, Yt)

)−1/p
, t ≥ 0.

For this policy, we have the reverse equality in (4.9).3 Using this inequality in
place of (4.10), we argue as before that limn→∞ τn = ∞ almost surely. ϕ ≤ 0,
(4.9) with the inequality reversed implies E

∫ n∧τn

0
e−βtUp(Ct) dt ≥ ϕ(x0, y0)

and letting n →∞, we obtain v(x0, y0) ≥ E
∫∞
0

e−βtUp(Ct) dt ≥ ϕ(x0, y0).

Theorem 1 Assume p > 0, p 6= 1 and A(p) > 0. Then the value function
u satisfies

u(θp) =
1

1− p
A−p(p)−

(
9
32

p θ4
p(1− θp)4

) 1
3

A−1−p(p) σ2 λ
2
3 +O(λ). (4.12)

Proof We assume θp 6= 1. For θp = 1 see Remark 1.

Step 1: Choice of constants and variables

We recall the constants γ2 and ν of (3.13). Set ξ =
√

2
3 (1− p)γ2Ap(p) + B,

where B is a constant chosen to make the expression under the square root
positive. We next define

h(δ) =
3
2

δ2λ
2
3 − 1

ν2
· δ4 +

3
2
B δ2λ

2
3

3 We used the optimal policy for the supersolution argument to get equality in
(4.10). For the subsolution argument we get the appropriate inequality in (4.10)
by using a suboptimal policy. However, we need to pick the trading policy so
that the terms containing the integrals dLt and dMt in (4.7) are zero, and the
consumption policy so that we get equality in (4.8).
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and choose a positive constant M satisfying

M > θpA
−p(p) +

1
4
σ2pν2ξ2A−p−1(p). (4.13)

We define functions

f±1 (δ)=νλ
1
3 − (1− p)νγ2A

p(p)λ± (1− p)νMAp(p)λ
4
3 − (1− p)h(−δ) λ

1
3

+
(
λ−

2
3 + (θp − δ)λ

1
3

)
h′(−δ), (4.14)

f±2 (δ)=ν λ
1
3 − (1− p)νγ2A

p(p)λ± (1− p)νMAp(p)λ
4
3 − (1− p)h(δ)λ

1
3

+
(
−λ−

2
3 + (θp + δ)λ

1
3

)
h′(δ). (4.15)

It is shown in Appendix A that there are numbers

δ±1 =
1
2
νλ

1
3 (1− ξλ

1
3 ) + o

(
λ

2
3
)
, δ±2 =

1
2
νλ

1
3 (1− ξλ

1
3 ) + o

(
λ

2
3
)

(4.16)

satisfying f±i (δ±i ) = 0, i = 1, 2.

Step 2: Construction of super/subsolutions.
Choose λ > 0 small enough that ζ±1 , θp − δ±1 and ζ±2 , θp + δ±2 all lie

in (0, 1/λ). (We have θp > 0 since α > r.) Define

w±(z) =





(
A−p(p)

1−p − γ2 λ
2
3 ±Mλ− A−p(p)

ν h(ζ±1 − θp)
)(

1+λz
1+λζ±1

)1−p

,

1
1−pA−p(p)− γ2 λ

2
3 ±Mλ− A−p(p)

ν h(z − θp),(
A−p(p)

1−p − γ2 λ
2
3 ±Mλ− A−p(p)

ν h(ζ±2 − θp)
)(

1−λz
1−λζ±2

)1−p

,

for −1/λ ≤ z ≤ ζ±1 , ζ±1 ≤ z ≤ ζ±2 , ζ±2 ≤ z ≤ 1/λ respectively. The reader
can verify that if M were zero, then in the region [ζ±1 , ζ±2 ] the formula for
w±(z) agrees with the power series expansion

γ0 − γ2λ
2
3 − γ42(z−θp)2λ

2
3 − γ44(z−θp)4,

where the coefficients γ0, γ2, γ42, and γ44 are those worked out in the pre-
vious section. The term ±Mλ in the definition of w± will be used to create
supersolution and subsolution triples. We have the derivative formula

w′±(z) =





λ
1+λz (1− p)w±(z), − 1

λ < z ≤ ζ±1 ,

−ν−1A−p(p) h′(z − θp), ζ±1 ≤ z ≤ ζ±2 ,

− λ
1−λz (1− p)w±(z), ζ±2 ≤ z < 1

λ .

The equations f±1 (δ1) = 0 and f±2 (δ2) = 0 guarantee that w′± is defined and
continuous at ζ±1 and ζ±2 . We also have

w′′±(z) =





− λ2

(1+λz)2 p(1− p)w±(z), − 1
λ < z < ζ±1 ,

−ν−1A−p(p) h′′(z − θp), ζ±1 < z < ζ±2 ,

− λ2

(1−λz)2 p(1− p)w±(z), ζ±2 < z < 1
λ .
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The function w±(z) is C2 except at ζ±1 and ζ±2 , and at these points the one-
sided second derivatives exist and equal the one-sided second derivative.

Step 3: Verification that (w−, ζ−1 , ζ−2 ) is a subsolution triple.
It suffices to verify

Dw−(z)− Ũ
(
(1− p)w−(z)− zw′−(z)

) ≤ 0, ζ−1 < z < ζ−2 . (4.17)

To do this, we simultaneously work with both w− and w+. We thereby
develop an inequality for w+ needed in the subsequent supersolution veri-
fication. We use the facts that z − θp = O

(
λ1/3

)
, so h(z − θp) = O

(
λ4/3

)
,

h′(z − θp) = O(λ).
For ζ±1 < z < ζ±2 we have (1 − p)w±(z) − zw′±(z) = a − b, where a =

A−p(p) and b = (1−p)γ2λ
2/3∓(1−p)Mλ−A−p(p)ν−1zh′(z−θp)+O

(
λ4/3

)
.

Lemma 1 implies

Ũ
(
(1− p)w±(z)− zw′±(z)

)
(4.18)

=
p

1− p
A1−p(p) + A(p)

[
(1− p)γ2λ

2
3 ∓ (1− p)Mλ− A−p(p)

ν
zh′(z − θp)

]

+O
(
λ

4
3
)

= pA(p)w(z) + γ2A(p)λ
2
3 ∓Mλ− A1−p(p)

ν
zh′(z − θp) + O

(
λ

4
3
)
.

Therefore,

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)

=
1
2
σ2p(1− p)(z − θp)2w±(z)− 1

2
σ2z2(1− z)2w′′±(z)

−γ2A(p)λ
2
3 ±Mλ +

1
ν

A1−p(p)zh′(z − θp) + O
(
λ

4
3
)

=
1
2
σ2pA−p(p)(z − θp)2 +

1
2ν

σ2z2(1− z)2A−p(p)h′′(z − θp)

−γ2A(p)λ
2
3 ±Mλ +

1
ν

A1−p(p)zh′(z − θp) + O
(
λ

4
3
)
.

Writing z = θp +(z−θp) and 1−z = 1−θp−(z−θp), we derive the relation

z2(1− z)2 = θ2
p(1− θp)2 + 2θp(1− θp)(1− 2θp)(z − θp) + O

(
λ

2
3
)
.

Using this and the formulas h′(δ) = 3δλ2/3 − 4δ3/ν2 + 3Bδλ2/3, h′′(δ) =
3λ2/3 − 12δ2/ν2 + 3Bλ2/3, we obtain

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)

=
[
1
2
σ2pA−p(p)− 6

ν3
σ2θ2

p(1− θp)2A−p(p)
]

(z − θp)2

+
[

3
2ν

σ2θ2
p(1− θp)2A−p(p)− γ2A(p)

]
λ

2
3

14



+σ2θp(1− θp)(1− 2θp)A−p(p)

[
3(z − θp)λ

2
3

ν
− 12(z − θp)3

ν3

]

+θpA
−p(p)

[
3(z − θp)λ

2
3

ν
− 4(z − θp)3

ν3

]
±Mλ + O

(
λ

4
3
)
.

The definitions of ν and γ2 imply that the first two terms on the right-hand
side are zero. Because

z − θp

ν
=

1
2
λ

1
3 + O

(
λ

2
3
)
,

the third term is O
(
λ4/3

)
, and we can simplify the fourth term to obtain

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)
= θpA

−p(p)λ±Mλ + O
(
λ

4
3
)

(4.19)

for z±1 < z < z±2 . From (4.13) we have (4.17) for all sufficiently small λ > 0.
This completes the verification that (w−, ζ−1 , ζ−2 ) is a subsolution triple.

Step 4: Verification that (w+, ζ+
1 , ζ+

2 ) is a supersolution triple
Step 4a: Interval (−1/λ, ζ+

1 ).
We must show that that (4.3) and (4.4) hold in this interval. Since

(1− p)w+(z) > 0 for all small λ > 0, so is w′+(z), and thus (4.3) holds.
It remains to verify that for sufficiently small λ

Dw+(z)− Ũ
(
(1− p)w+(z)− zw′+(z)

) ≥ 0, − 1
λ

< z < ζ+
1 . (4.20)

In this interval,

(1− p)w+(z)− zw′+(z) =
1− p

1 + λz
w+(z)

=
1

1 + λζ+
1

(
1 + λz+

1

1 + λz

)p (
A−p(p)− (1− p)γ2λ

2
3

+ (1− p)Mλ− 1
ν

(1− p)A−p(p)h(ζ+
1 − θp)

)
.

We use the equality Ũ(αc̃) = α−(1−p)/p Ũ(c̃) and the first equality in Lemma 1:

Ũ
(
(1− p)w+(z)− zw′+(z)

)

= (1 + λz+
1 )

1−p
p

(
1 + λz

1 + λζ+
1

)1−p
p

1− p

×
(

A−p(p)− (1− p)γ2λ
2
3 + (1− p)Mλ− 1− p

ν
A−p(p)h(ζ+

1 − θp)
)

×
(

A(p) +
1− p

p
γ2A

p+1(p)λ
2
3 − 1− p

p
MAp+1(p)λ + O

(
λ

4
3
))

= (1 + λζ+
1 )

1−p
p w+(z)

×
(
pA(p) + (1− p)γ2A

p+1(p)λ
2
3 − (1− p)MAp+1(p)λ + O

(
λ

4
3
))

.

15



But (1 + λζ+
1 )(1−p)/p = 1 + 1−p

p λζ+
1 + O

(
λ2

)
= 1 + 1−p

p λθp + O
(
λ4/3

)
; thus

Ũ
(
(1− p)w+(z)− zw′+(z)

)

= w+(z)
(
pA(p) + (1− p)γ2A

p+1(p)λ
2
3 − (1− p)MAp+1(p)λ

+(1− p)θpA(p)λ + O
(
λ

4
3
))

. (4.21)

It is easy to verify that for λ > 0 sufficiently small, the function k(z) ,
(z − θp) + λz(1 − z)/(1 + λz) attains its maximum over (−1/λ, ζ+

1 ] at ζ+
1

and k(ζ+
1 ) < 0. Therefore

k2(z) ≥ k2(ζ+
1 ) = (δ+

1 )2+δ+
1 O(λ) =

1
4
ν2λ

2
3 − 1

2
ν2ξλ+o

(
λ
)
, − 1

λ
< z ≤ ζ+

1 .

It follows that for sufficiently small λ > 0

Dw+(z)− Ũ
(
(1− p)w+(z)− zw′+(z)

)

=
{

1
2
p σ2

(
(z − θp) + z(1− z)

λ

1 + λz

)2

− γ2A
p+1(p)λ

2
3 + MAp+1(p)λ

−θpA(p)λ + O
(
λ

4
3
)}

(1− p)w+(z)

≥
{

1
2
p σ2k(ζ+

1 )− γ2A
p+1(p)λ

2
3 + MAp+1(p)λ− θpA(p)λ + O

(
λ

4
3
)}

×(1− p)w+(z)

=
{(

1
8
pσ2ν2 − γ2A

p+1(p)
)

λ
2
3 +

(
MAp+1(p)− 1

4
pσ2ν2ξ − θpA(p)

)
λ

+o(λ)
}

(1− p)w+(z)

=
{(

MAp+1(p)− 1
4
pσ2ν2ξ − θpA(p)

)
λ + o(λ)

}
(1− p)w+(z) ≥ 0,

where we have used (4.13) in the last step.

Step 4b: Interval [ζ+
2 , 1/λ). This is analogous to Step 4a.

Step 4c: Interval (ζ+
1 , ζ+

2 ). From (4.19) and (4.13) we have

Dw+(z)− Ũ
(
(1− p)w+(z)− zw+(z)

)
=

(
θpA

−p(p) + M
)
λ + O

(
λ

4
3
) ≥ 0.

We must also show that

g1(z) , λ(1− p)w+(z)− (1 + λz)w′+(z) ≥ 0, ζ+
1 < z < ζ+

2 . (4.22)
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For z ∈ (ζ+
1 , ζ+

2 ), we have z − θp = O
(
λ1/3

)
. Using this fact, we compute

g1(z) = A−p(p)λ− (1− p)γ2λ
5
3 + (1− p)Mλ2

−3(1− p)
2ν

A−p(p)(z − θp)2λ
5
3 +

1− p

ν3
A−p(p)(z − θp)4λ

+
3(1 + λz)

ν
A−p(p)(z − θp)λ

2
3 − 4(1 + λz)

ν3
A−p(p)(z − θp)3,

g′1(z) =
12
ν

A−p(p)λ
2
3

[
1
4
−

(
z − θp

νλ
1
3

)2

+ O(λ)

]
.

We know that g1(ζ+
1 ) = 0 and thus, to prove (4.22), it suffices to show that

g′1 is positive on [ζ+
1 , ζ+

2 ]. Because −(z − θp)2 is a concave function of z, it
suffices to check the endpoints. We have for i = 1, 2 that

(
ζ+
i − θp

νλ
1
3

)2

=
(

1
2
(1− ξλ

1
3 ) + o

(
λ

1
3
))2

=
1
4
− 1

2
ξλ

1
3 + o

(
λ

1
3
)
.

Therefore,

g′1(ζ
+
i ) =

12
ν

A−p(p)λ
2
3

[
1
2
ξλ

1
3 + o

(
λ

1
3
)]

> 0

for sufficiently small λ > 0. The proof that

g2(z) = λ(1− p)w+(z) + (1− λz)w′+(z)

is positive for z ∈ [ζ+
1 , ζ+

2 ] is analogous. This completes the proof that
(w+, ζ+

1 , ζ+
2 ) is a supersolution triple.

Conclusion:
We note that w±(θp) = 1

1−pA−p(p) − γ2 λ
2
3 ± Mλ, and so Lemma 2

implies

1
1− p

A−p(p)− γ2λ
2
3 −Mλ ≤ u(θp) ≤ 1

1− p
A−p(p)− γ2λ

2
3 + Mλ.

Corollary 1 Assume p > 0, p 6= 1 and A(p) > 0. For fixed z ∈ T , the value
function satisfies

u(z) =
1

1− p
A−p(p)−

( 9
32

p θ4
p(1− θp)4

) 1
3
A−1−p(p)σ2 λ

2
3 + O(λ). (4.23)

Proof In the proof of Theorem 1 we constructed a supersolution w+ and a
subsolution w− such that w+(z) − w−(z) = O(λ), w±(z) = w±(θ) + O(λ)
for fixed z ∈ T . It follows that u(z) = w±(z) + O(λ) = w±(θ) + O(λ) =
u(θ) + O(λ).

Theorem 2 Assume p > 0, p 6= 1, A(p) > 0 and θp 6= 1. Then with ν given
by (3.13), we have

z1 = θp − 1
2
νλ

1
3 + O

(
λ

2
3
)
, z2 = θp +

1
2
νλ

1
3 + O

(
λ

2
3
)
.
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Proof The value function u is concave, so u′ is monotone. By taking the
derivative of u in the BS and SS regions (see (2.15) and (2.16)) we see that

u′(z) = O(λ) ∀z ∈ [z1, z2]. (4.24)

It follows that for z = z1 and z = z2, and hence for all z ∈ [z1, z2],

Ũ
(
(1− p)u(z)− zu′(z)

)
=

p

1− p
A1−p(p) + (1− p)γ2A(p)λ

2
3 + O(λ).

We also know that u′′(z) is continuous for z ∈ T \ {1}. From equa-
tions (2.15), (2.16) it follows that u′′(zi) = O

(
λ2

)
, zi 6= 1. We thus have

Du(zi) =
(
pA(p) +

1
2
σ2p(1− p)(zi − θp)2

)
u(zi) + O(λ)

=
p

1− p
A1−p(p)− pγ2A(p)λ

2
3 +

1
2
σ2pA−p(p)(zi − θp)2 + O(λ).

If zi = 1, the term (1 − zi)2u′′(zi) is set equal to zero (see [43], equation
(A.5)), and the above equation still holds. To satisfy (2.11) we must have

0 = Du(zi)− Ũ
(
(1− p)u(zi)− ziu

′(zi)
)

= −γ2A(p)λ
2
3 +

1
2
σ2pA−p(p)(zi − θp)2 + O(λ).

(4.25)

It follows that

zi = θp ± λ
1
3

√
2

pσ2
Ap+1(p)γ2 + O

(
λ

2
3
)

= θp ±
(

3
2p

θ2
p(1− θp)2

) 1
3

λ
1
3 + O

(
λ

2
3
)
,

where the − sign is for z1 and the + sign is for z2.

Remark 1 The proof of Theorem 1 is valid so long as θp 6= 1. The case
of θp = 1 can be considered a singular case for which the parameter ν
appearing in a denominator in h(δ) is zero. The intuition is that if the
optimal proportion in the risky asset is 100% of wealth, then as soon as the
agent’s position reachs the optimal 100% in stock, the investor no longer
incurs transaction costs from adjusting it. However, to consume the agent
must transfer money from stock to money market and pay the transaction
cost. We could regard this cost as a consumption tax. It follows that the
loss in value function is of order λ rather than λ2/3. In [43], Theorems 11.2,
11.6 show that in this case z2 = θp = 1 > z1 > 0, and Corollary 9.10 asserts

v(x, y) =
1

1− p
A−p(p)

(
x + (1− λ)y

)1−p
, (x, y) ∈ S, x ≤ 0,

or equivalently,

u(z) = v(1− z, z) =
1

1− p
A−p(p)(1− λz)1−p, 1 ≤ z <

1
λ

.

18



We see then that

u(θp) =
1

1− p
A−p(p)−A−p(p)λ + O

(
λ2

)
, (4.26)

which is consistent with (4.12).
The proof of Theorem 2 is valid for θp = 1, except the last step. When

θp = 1, we have γ2 = 0 and (4.25) reduces to

z1 − θp = z1 − 1 = O
(
λ

1
2
)
.

Remark 2 The optimal consumption policy c is given by v
−1/p
x (see (2.7)

and (2.6)). Since v(x, y) = (x + y)1−pu
(
y/(x + y)

)
(see (2.10)), we have

vx(x, y) = (1− p)(x + y)−pu

(
y

x + y

)
− y(x + y)−1−pu′

(
y

x + y

)

= (1− p)(x + y)−pu

(
y

x + y

)
+ O(λ),

where we have used (4.24). Therefore, Theorem 1 implies that the optimal
consumption in feedback form is

c =
(
A−p(p)− (1− p)γ2λ

2
3

)− 1
p

(x + y) + O(λ)

=
(
A(p) +

1− p

p
γ2λ

2
3

)
(x + y) + O(λ).

For sufficiently small λ the existence of transaction costs increases the size
of consumption for p ∈ (0, 1), while the consumption is decreased for p > 1.
This is explained by the fact that the index of intertemporal substitution,
1/p, is high for small p. An agent with index of intertemporal substitution
greater than 1 will avoid some transaction cost by consuming faster.

Remark 3 There is considerable evidence that

u(θp) =
1

1− p
A−p(p)− γ2λ

2
3 − θpA

−p(p)λ + O
(
λ

4
3
)
. (4.27)

We have just seen in (4.26) that this is the case when θp = 1 (and conse-
quently γ2 = 0). In the proof of Theorem 1, any choice of M > θpA

−p(p)
gives us a subsolution of the form

w−(θp) =
1

1− p
A−p(p)− γ2λ

2
3 −Mλ + O

(
λ

4
3
)
. (4.28)

(The second term on the right-hand side of (4.13) is needed only for the
supersolution argument.) Finally, the coefficient −θpA

−p(p) on λ can be
obtained by a tedious heuristic analysis along the lines of Section 3.

In Remark 1 we introduced the concept of consumption tax as an in-
terpretation of the transaction cost an agent must pay in order to move
capital from stock to money market before consuming it. In that remark,
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the agent was100% invested in stock. If instead the agent seeks to hold a
proportion θp 6= 1 in stock, then consuming proportionally from stock and
money market, the agent would pay a consumption tax λθp times the to-
tal consumption. To highest order, the optimal consumption level is thus
(1 − λθp) of what it would be if there were no transaction cost, and this
multiplies the value function by

(1− λθp)1−p = 1− (1− p)θp λ + O(λ2).

The value function for zero transaction cost when wealth is 1 is A−p(p)/(1−
p), and so after this multiplication, the value function has been reduced by
θpA

−p(p) λ, which is the order λ term we see in (4.27). We thus expect
the value function for the problem with transaction cost λ to be reduced
from the zero-transaction cost value function A−p(p)/(1 − p) by at least
θpA

−p(p)λ, this reduction being due solely to the cost of moving capital
from stock to money market in order to consume. There is also a cost of
trading to stay in the NT wedge, which reduces the value function by γ2λ

2
3 ,

but cannot further reduce the value function by an order λ term because
then the value function would fall below the lower bound (4.28).

Under the assumption that (4.27) holds, one can improve the calculations
in Theorem 2. We already have from Theorem 2 and its proof that zi−θp =
O(λ1/3) and that u′(z) = O(λ) for z ∈ [z1, z2]. The mean-value theorem
gives

u(zi) = u(θp) + O
(
λ

4
3
)
,

and

(1− p)u(z1)− z1u
′(z1) =

(1− p)u(z1)
1 + λz1

= A−p(p)−(1− p)γ2 λ
2
3−(2−p)θpA

−p(p)λ + O
(
λ

4
3
)
,

(1− p)u(z2)− z2u
′(z2) =

(1− p)u(z2)
1− λz2

= A−p(p)− (1− p)γ2 λ
2
3 + pθpA

−p(p)λ + O
(
λ

4
3
)
.

Using Lemma 1, we obtain

Ũ
(
(1− p)u(z2)− z2u

′(z2)
)

=
p

1− p
A1−p(p) + (1− p)A(p)γ2 λ

2
3 + (2− p)θpA

1−p(p)λ + O
(
λ

4
3
)
,

Ũ
(
(1− p)u(z1)− z1u

′(z1)
)

=
p

1− p
A1−p(p) + (1− p)A(p)γ2 λ

2
3 − pθpA

1−p(p)λ + O
(
λ

4
3
)
.

We write for z1 and z2 similarly as in Theorem 2,

Du(zi) =
p

1− p
A1−p(p)− pA(p)γ2 λ

2
3 − pθpA

1−p(p) λ

+
1
2
σ2pA−p(p)(zi − θp)2 + O

(
λ

4
3
)
.
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From Du(zi) = Ũ
(
(1− p)u(zi)− ziu

′(zi)
)
, we now see that

(z1 − θp)2 =
2

pσ2

(
A1+p(p)γ2 λ

2
3 + 2θpA(p)λ

)
+ O

(
λ

4
3
)
, (4.29)

(z2 − θp)2 =
2

pσ2
A1+p(p)γ2 λ

2
3 + O

(
λ

4
3
)
, (4.30)

which implies

z1 − θp = −1
2
ν λ

1
3 − 4θpA(p)

σ2p ν
λ

2
3 + O(λ),

z2 − θp =
1
2
ν λ

1
3 + O(λ).

This suggests that the optimal policy is to keep a wider wedge on the right
side of the Merton proportion θp. This extra width makes sense because
consumption reduces the money market position.

We can do the same calculation for θp = 1, in which case γ2 = ν = 0.
Taking the square roots in (4.29), (4.30), we now have

z1 − θp = z1 − 1 = −
√

4θpA(p)
σ2p

λ
1
2 + O

(
λ

5
6
)
, z2 − θp = z2 − 1 = O(λ).

In fact, when θp = 1, we have z2 = θp, as we saw in Remark 1.

Remark 4 In the key formulas derived in this paper, the transaction cost
parameter λ appears in combination with Γ , θp(1 − θp). According to
Theorem 1, the highest order loss in the value function due to transaction
costs is (

9p

32

) 1
3

A−1−p(p)σ2
(
Γ 2λ

) 2
3 . (4.31)

From Theorem 2, we see that

zi − θp = (−1)i

(
3
2p

) 1
3 (

Γ 2λ
) 1

3 + O
(
λ

2
3
)
. (4.32)

One way to see the intrinsic nature of the quantity Γ 2 is to define the
proportion of capital in stock, θt = Yt/(Xt + Yt), and apply Itô’s formula
when (Xt, Yt) is generated by the optimal triple (C,L, M), for which L and
M are continuous, to derive the equation

dθt = θt(1− θt)
dSt

St
− rθt(1− θt) dt− σ2θ2

t (1− θt) dt +
θtCt

Xt + Yt
dt

+
λθt + 1
Xt + Yt

dLt +
λθt − 1
Xt + Yt

dMt. (4.33)

We see that the response of θt to relative changes in the stock price is
θt(1− θt). When replicating an option by trading, the position held by the
hedging portfolio, denominated in shares of stock, is called the delta of the

21



option, and the sensitivity of the delta to changes in the stock price is the
gamma. We have here a similar situation, except that θt is the proportion
of capital held in stock, rather than the number of shares of stock, and
θt(1−θt) is the sensitivity of this proportion to relative changes in the stock
price.

We can now obtain the quantities in (4.31) and (4.32) by the following
heuristic argument. Suppose when the transaction cost is λ > 0 we choose to
keep θt in an interval [θp−w, θp +w], trading in order to create reflection at
the endpoints of this interval. As compared to the optimal expected utility
corresponding to zero transaction costs, this entails two losses: the loss due
to displacement (not always having θt = θp) and the loss due to transaction
costs. The first increases with w while the second decreases. We wish to
choose w to balance these losses, i.e., to minimize their sum.

In (3.1) we computed the loss due to displacement ε to be

L(ε) =
p

2
(X0 + Y0)1−pσ2A−1−p(p)ε2.

In the present case, the displacement is a random, time-varying quantity
taking values in [−w,w]. However, for small w > 0, for each positive t the
distribution of θt in [−w,w] is approximately uniform. Therefore, the loss
due to displacement in the present model is approximately

DL(w) =
1

2w

∫ w

−w

L(ε) dε =
p

6
(X0 + Y0)1−pσ2A−1−p(p)w2.

Consider a Brownian motion doubly reflected in order to stay in [−w,w],
i.e., Zt = Wt + Lt − Mt, where Zt ∈ [−w,w] for all t, Lt grows only
when Zt = −w and Mt grows only when Zt = w. Then limt→∞ ELt/t =
limt→∞ EMt/t = 1/(4w). (Use Itô’s formula to write

Ef(Zt) = f(Z0) +
1
2

∫ t

0

Ef ′′(Zu) du + f ′(−w)ELt − f ′(w)EMt,

divide by t, and let t →∞ to conclude

1
4w

∫ w

−w

f ′′(x) dx + f ′(−w) lim
t→∞

1
t
ELt − f ′(w) lim

t→∞
1
t
EMt = 0

for any C2 function f .) The amount of “transacting” done at both bound-
aries grows at rate 1/(2w) per unit time. Because the dW (t) term in (4.33)
is multiplied by θt(1− θt)σ, and scaling Brownian motion by a constant is
like scaling time by the square of the constant, the amount of transacting
done to keep θt in [−w, w] grows at rate Γ 2σ2/(2w) per unit time. This
causes a relative loss of capital

η =
Γ 2σ2λ

2w

per unit time. Incurring this loss is equivalent to having zero transaction
cost but with the mean rate of return of both the stock and the money
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market reduced by η. According to (2.3)–(2.5), the optimal expected utility
in such a problem is

1
1− p

(
A(p) +

η(1− p)
p

)−p

(X0 + Y0)1−p

=
1

1− p
A−p(p)(X0 + Y0)1−p − ηA−p−1(p)(X0 + Y0)1−p + O(η2).

Therefore, the loss due to transaction costs is approximately

TC(w) = ηA−p−1(p)(X0 + Y0)1−p =
1

2w
Γ 2σ2λA−p−1(p)(X0 + Y0)1−p.

The total loss is approximately TL(w) = DL(w) + TC(w). Setting
TL′(w) = 0 and solving for w, we obtain

w =
(

3
2p

) 1
3

(Γ 2λ)
1
3 ,

the leading term in (4.32). With this value of w, we have

TL(w) =
(

9p

32

) 1
3

A−1−p(p)σ2(Γ 2λ)
2
3 (X0 + Y0)1−p,

thereby obtaining the term in (4.31).
It is interesting to note that the quantity Γ 2λ also plays a fundamental

role in the formal asymptotic expansions of Whalley and Wilmott [49]. In

fact, even the constants
(

9
32

) 1
3 and

(
3
2

) 1
3 in (4.31) and (4.32) appear in [49],

the first at the end of Section 3.3 and the second in equation (3.10).

A Width of the NT interval

We shall only consider δ of the form O
(
λ1/3

)
. For such δ, we may write the

terms of order λ and lower in f±1 (δ) of (4.14) as

f±1 (δ)

= ν λ
1
3 − (1− p)γ2νAp(p) λ− h′(δ)λ−

2
3 − θph

′(δ)λ
1
3 + h′(δ) δλ

1
3 + O

(
λ

4
3
)

= ν λ
1
3 − (1− p)γ2νAp(p) λ− 3δ +

4
ν2
· δ3

λ
2
3
− 3Bδλ

2
3 + O

(
λ

4
3
)
.

Consider δ0 , 1
2νλ1/3

(
1− ξ0λ

1/3
)
. Then

f±1 (δ0) = ν λ
1
3 − (1− p)γ2νAp(p)λ− 3

2
ν λ

1
3 +

3
2
νξ0 λ

2
3

+
1
2
ν λ

1
3

(
1− 3ξ0λ

1
3 + 3ξ2

0λ
2
3

)
− 3

2
Bν λ + O

(
λ

4
3
)

= ν
(3

2
ξ2
0 − (1− p)γ2A

p(p)− 3
2
B

)
λ + O

(
λ

4
3
)
.
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With ξ =
√

2
3 (1− p)γ2Ap(p) + B > 0, we take ξ0 =

√
ξ2 + η, where

|η| < ξ2. Then f±1 (δ0) = 3
2νη λ+O

(
λ

4
3
)
. Thus, for η > 0 we have f±1 (δ0) > 0,

and for η < 0 we have f±1 (δ0) < 0 for sufficiently small λ > 0. Therefore,
for every η ∈ (

0, ξ2
)

and sufficiently small λ > 0, there exists

δ±1 ∈
(

1
2
ν λ

1
3

(
1− λ

1
3
√

ξ2 − η
)
,
1
2
ν λ

1
3

(
1− λ

1
3
√

ξ2 + η
))

satisfying f±1 (δ±1 ) = 0. In other words, δ±1 = 1
2νλ

1
3

(
1− ξ λ

1
3

)
+ o

(
λ

2
3
)
. The

proof of the existence of δ±2 is analogous.
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